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INTRODUCTION
This study investigated modular and ensemble systems of machine learning

methods for computer-aided diagnosis (CAD) of breast cancer to reduce the number of
benign biopsies. While mammography is valuable for early detection of breast cancer, it
has a high false-positive rate. A CAD system for identifying very likely benign lesions as
candidates for follow-up instead of biopsy could spare women discomfort, anxiety, and
expense and potentially improve the cost-effectiveness of mammographic screening
programs.

This predoctoral fellowship covers two different students both mentored by
Joseph Lo. It was originally awarded to Mia Markey, who graduated in 2002 from Duke
University with her Ph.D. Modular Machine Learning Methods for Computer-Aided
Diagnosis of Breast Cancer. The original aims were concluded as part of that dissertation
research. As noted in last year's report, the Army authorized the transfer of the remaining
fellowship to Jonathan Jesneck. We proposed new aims 4 and 5 based on the success as
well as difficulties discovered previously. Consistent with those aims, Mr. Jesneck has
developed ensemble classifiers for the task of computer-aided diagnosis of breast
microcalcification clusters, which are very challenging to characterize for radiologists
and computer models alike. The rationale and progress for these aims is summarized in
the report below.

BODY
The data consisted of mammographic features extracted by automated image

processing algorithms. The same cases were used as described in last year's report.

Task 1. Identify subsets of the training data using both a priori information
and unsupervised learning methods.

The database of digitized mammograms has already been created and analyzed, as
described in a previous year's report. The most important grouping was mass vs.
calcification lesions. In particular, both radiologists and computer models performed far
worse when attempting to characterize the calcification lesions, which motivated the
current emphasis on these types of lesions (see #1, #2, and #3 in Reportable Outcomes).
This aim is now concluded.

Task 2. Build local models for breast cancer prediction for each subset of the
training data using supervised learning methods. Evaluate the performance of the
local models on the training data relative to a single, global, supervised learning
model and to current clinical practice.

This task has already been completed and resulted in a publication (see #2 and #3
in Reportable Outcomes), as described in a previous year's report. With regards to the
challenging calcification cases, no local model was able to outperform the simple, single
global model.

Task 3. Combine the local models to form a global, modular model. Evaluate
the performance of the modular model on the evaluation data set relative to a single,
global, supervised learning model and to current clinical practice.

This task has also been completed and published (see #2 and #4 in Reportable
Outcomes), as described in a previous year's report. The combination of modular models
did not outperform the simpler, single global model. This negative result was attributed in
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part to the weaker performance over the challenging calcification cases. This again
motivated the current work.

Task 4: For most challenging subset of the data, the microcalcification
lesions, extract image-based features using a fully automated CAD scheme.

This task involved two major efforts. First, whereas all previous aims focused on
radiologist-interpreted findings, here we extracted features from the digitized
mammograms using a computer-aided detection (CAD) algorithm. These new features
were incorporated into our first ensemble models, each based upon a different subset of
features such as radiologist-interpreted, image processing, and patient history. Initial
results were presented and published, as described in last year's report. The calcification
data set consisted of 1508 lesions, 811 benign and 697 malignant.

Calcification detection and segmentation
Our algorithm used a matched difference-of-Gaussian (DoG) filter to detect

microcalcifications. The DoG filter selected circular bright areas, which detected
calcifications well and did not detect bright vessels in the image, as had been the case
with earlier histogram-based calcification detection methods.

A Gaussian mixture-model density estimation technique was used to segment
automatically the outline of the individual calcifications. This technique assumed the
background pixels to be distributed from one Gaussian density, and the calcification
pixels from another Gaussian density. An iteratively reweighted least squares technique
was implemented in order to fit the mixture densities. Then an optimal threshold was
chosen to separate the background pixels from the calcification pixels.

Morphological features
Once the calcifications were detected and properly segmented, the algorithm then

extracted morphological features. The morphological descriptors of the individual
calcifications were area, mean density above the background density, eccentricity, and
the number of calcifications in the cluster. These features have been shown to aid in CAD
schemes for calcification clusters [3]. The cluster morphological features were summaries
of the individual calcification morphological feature values. These summary statistics
were the minimum, maximum, average, and standard deviation. This resulted in a total of
13 morphological cluster features.

Texture features
It has been shown that by erasing the calcifications from the lesion image,

important texture information can be extracted from the background anatomy [3]. Our
algorithm characterized the texture features of the anatomical background of the lesion
ROI, with the calcifications removed. Once the calcifications had been properly detected
and segmented, they were erased smoothly by bilinear interpolation from the image.
Figures 1-3 show the progression of a sample ROI from raw data to calcification
segmentation to calcification erasure for texture analysis.

The spatial gray-level dependence (SGLD) matrix was used to calculate texture
features. The SGLD is the joint probability of the occurrence of gray levels for pixel pairs
which are separated by a particular distance and at a particular angle [4]. The 13 SGLD
or co-occurrence matrix features are correlation, entropy, energy (angular second
moment), inertia, inverse difference moment, sum average, sum entropy, sum variance,
difference average, difference entropy, difference variance, information measure of
correlation 1, and information measure of correlation 2. The SGLD matrices were
calculated over the bounding boxes of the detected microcalcification clusters. A set of
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13 SGLD features are calculated for each combination of distance and angle. We
considered all possible combinations of the angles {0, 45, 90, 135} degrees with the
distances { 1, 5, 10, 15, 25} pixels. Overall, this yielded 260 texture features.

Fig. 1: ROI of calcification cluster Fig. 2: Segmented calcifications Fig. 3: ROI with calcifications erased

Task 5: Develop ensemble models for predicting benign vs. malignant
calcification clusters.

For ensemble modeling, the feature sets (morphology, texture, BI-RADS, and
patient age) were combined in various models in order to assess the relative predictive
power of the feature sets. Linear discriminant analysis (LDA) and artificial neural
networks (ANNs) were used as models. The LDAs modeled the linear trends of the data,
and the nonlinear trends can be seen in the performance difference between the LDA and
ANN classification performances.

The large number of input features often hampered model training. Therefore
feature selection was used. For the LDA, stepwise feature selection using the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used. By
penalizing the model size, the feature selection methods found an optimal compromise
between model goodness of fit and model complexity. Tables 1 and 2 show the areas
under the ROC curves for the top five LDAs and top five ANNs, sorted in order of
decreasing testing performance. There were no apparent trends in which combinations of
feature subsets were the best. The best LDA model used morphology, BI-RADS, and
patient age. The best ANN used only BI-RADS features and yielded the best performance
overall with ROC area of 0.754±0.038.

Table 1: The top 5 LDAs Table 2: The top 5 ANNs
LOOCV 10-fold CV

Training Testing Features Training Testing Features

0.711 0.692±_0.014 M, B, P 0.778 0.754±0.038 B

0.708 0.690±0.015 M, B 0.751 0.734±-0.032 M, B

0.845 0.686±0.014 M, T, B, P 0.762 0.733+0.022 M, B, P

0.843 0.686±0.014 M, T, B 0.717 0.705±0.038 B, P

0.833 0.677±0.016 T, B, P 0.901 0.704±0.022 T, B
The values plotted are areas under the ROC curves.

Legend: B = BI-RADS, M = morphology, P = patient age, T = texture

6



The top ANN outperformed the top LDA (p-val < 0.001) over the entire range of
the ROC curves, as shown in Figure 4. This is a very unusual situation, as in our
experience with breast CAD systems, rarely do ANNs actually outperform the simple but
robust LDA models.

ROC curves for best LDA and best ANN

0.9

0.8'

0.7

0.6

0.4 €

0.3 -- best LDA
- best ANN

0.1

0 0.2 0.4 0.6 0.8 1
FPF

Fig. 4: ROC curves for the top LDA and top ANN

KEY RESEARCH ACCOMPLISHMENTS
• Developed a new algorithm for microcalcification detection with high sensitivity
• Developed a very accurate calcification border segmentation algorithm
• Developed morphological features for microcalcifications and microcalcification

clusters
* Developed texture features for lesion ROIs with the calcifications removed
* Developed a fully automated ensemble CAD system to detect microcalcification

clusters
• Developed a nonlinear ANN predictive model which was statistically

significantly better than the widely used linear discriminant models

CONCLUSIONS
We developed ensemble systems of machine learning methods for computer-

aided diagnosis (CAD) of breast cancer to reduce the number of benign biopsies. We
focused in particular on microcalcification lesions, which are much more difficult to
classify than masses. Taking advantage of nonlinearities within our large dataset, the
ANNs were able to fit and classify the data better than the LDAs. The BI-RADS features
were the strongest in terms of classifier performance. Unfortunately the texture features
did not contribute greatly to the classifiers, which could be due to the significant added
noise introduced by the mammogram film-digitizing scanner.

This project has built the framework for general data fusion techniques for breast
cancer diagnosis and has led Mr. Jesneck to expand this research area in his new Army
Breast Cancer Predoctoral Fellowship: A Computer-A ided Diagnosis System for Breast
Cancer Combining Mammography and Genomics.
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Abstract

Perceptrons are typically trained to minimize mean square error (MSE). In computer-aided diagnosis (CAD),
model performance is usually evaluated according to other more clinically relevant measures. The purpose of
this study was to investigate the relationship between MSE and the area (A:) under the receiver operating
characteristic (ROC) curve and the high-sensitivity partial ROC area ( 0.90A.'). A perceptron was used to predict
lesion malignancy based on two mammographic findings and patient age. For each performance measure, the
error surface in weight space was visualized. Comparison of the surfaces indicated that minimizing MSE
tended to maximize A:, but not 0.90AZ'. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Computer-aided diagnosis; Perceptron; Neural network; Breast cancer; Error surface

1. Introduction

While mammography is very sensitive at detecting breast cancer, its specificity is low. Only 15
-34% of non-palpable, mammographically suspicious lesions are found to be malignant at biopsy

[1,2]. The excessive number of benign breast biopsies raises the overall cost of mammographic
screening to society [3] and results in emotional and physical burden to the patients. One goal of

* This work was supported in part by USPHS grant number R29-CA75547 awarded by the National Cancer Institute,

Whitaker Foundation grant number RG 97-0322, Susan G. Komen Breast Cancer Foundation grant number 9803, and
USAMRMC grants number DAMD 17-96-1-6226 and DAMD 17-94-J-4371 awarded by the US Army.

*Corresponding author. Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710,
USA. Tel.: +1-919-684-7751; fax: +1-919-684-7122.

E-mail address.: markey@diuke.edu (M.K. Markey).

0010-4825/02/$-see front matter © 2002 Elsevier Science Ltd. All rights reserved.
P11: S0010-4825(01)00035-X
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the application of computer-aided diagnosis (CAD) to mammography is the reduction of this false
positive rate.

In recent years, many breast cancer CAD studies have focused on the use of artificial neural

network (ANN) models. ANN models have been developed to predict malignancy among suspicious

breast lesions based upon mammographic and history findings [4-8]. Most networks for CAD are

based on classic feed-forward, error-backpropagation paradigms, which are trained to minimize mean

squared error (MSE) using a gradient descent technique. In "weight space", the ANN modifies

a vector of weights, descending down a multi-dimensional error surface in search of the global

minimum in MSE. Once trained, however, these ANNs are often evaluated according to other more

clinically relevant measures of performance from receiver operating characteristic (ROC) analysis.

Such measures include the ROC area index (Az) and the partial area index (0.90A') corresponding to

the portion of the ROC curve in the high sensitivity range of 0.9-1.0 [9,10]. (More information on
the o.90A' is provided in the Methods section.)

The relationship between these three performance measures is not well defined, but there is a
generally unstated assumption that a classifier trained to optimize MSE will also tend to optimize

other measures such as Az and 0.90A'. The validity of that assumption was questioned in recent

studies. In one study, Kupinski et al. compared the performance of neural network models trained in

the conventional manner (i.e., minimize MSE) vs. those trained by a niched Pareto multi-objective
genetic algorithm (NP-GA) which simultaneously maximized sensitivity and specificity [11]. Using
simulated XOR (exclusive or) data, they found that the ROC curve generated by NP-GA training
was superior to that resulting from conventional training for both a perceptron (logistic discriminant)
and an artificial neural network. Kupinski et al. also compared the performance of a conventionally
trained perceptron to a NP-GA trained perceptron for the task of breast mass detection [12]. They

found that while there was no significant difference between the models in terms of Az, the NP-GA
trained perceptron was significantly better in terms of the 0.90A'. In other words, the weights identified
by minimizing the MSE were inferior to those identified by the NP-GA in terms of the model's
performance at high sensitivities.

A related study demonstrated that different feature selection techniques might be preferred when

0.90A, is considered instead of A,. Sahiner et al. compared the performance of linear discriminant
analysis (LDA) classifiers using features selected by an LDA technique vs. a genetic algorithm (GA)
[13]. The former provided better Az but the latter had better 0.90A'.

All of the above studies examined the behavior of either linear or logistic discriminants. Although
highly simplified compared to ANNs, these techniques are important for several reasons. First, their
simplicity allows easy analysis of the relatively few parameters. For example, previous work at this

institution presented a typical ANN for breast cancer CAD with 16 inputs and 10 hidden nodes,
characterized by 180 weight parameters [14]. In comparison, the highly simplified perceptrons in

this study were characterized by only four weights.
Secondly, several authors have reviewed recent studies where ANNs were applied to CAD prob-

lems, and suggested that a logistic model (such as a perceptron) would have likely provided similar

performance while avoiding over-fitting problems [15,16]. Indeed, many recent studies in the field of
CAD have been based upon linear discriminant models [17-20]. Any lessons learned from optimizing
perceptrons would thus likely be useful to the field of CAD research.

The simple architecture of perceptrons is crucial to this study, which investigates the underlying
behavior of these models by studying the error surfaces formed as a function of the parametric
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weights. In particular, the goal is to compare error surfaces resulting from measuring performance
with MSE vs. A, and 0.904'z.

2. Materials and methods

2.1. Data set

The data set consisted of 500 cases of non-palpable breast lesions from patients who had undergone
excisional biopsy at Duke University Medical Center between 1991 and 1996. In other words, the
data set consisted of a consecutive sample of actual clinical cases. Of these 500 lesions, 65% were
found to be benign as a result of histopathologic diagnosis. The relatively low prevalence of disease
in this data set is consistent with the literature concerning this diagnostic task [1,2]. It is expected
that models built on a clinically representative case mix will be better prepared to classify previously
unseen clinical cases. The method of encoding the lesion descriptors has been previously described
[14], and will only be summarized here. Expert radiologists retrospectively reviewed the patient
films and recorded ten mammographic findings according to the Breast Imaging and Reporting Data
System (BI-RADS TM ) lexicon [21], as well as other patient history data including the age. These
findings were encoded into numeric values and used as input features in order to predict the known
biopsy outcome of benign vs. malignant.

2.2. Network architecture

Even with the simplified architecture of a perceptron, it was still important to reduce the dimen-
sionality of the input features in order to permit visualization and analysis. The number of inputs
was therefore pruned to the three most important ones, based upon previous work in identifying
the most important input findings for this diagnostic problem [14,22]. The BI-RADSTM findings
used were mass margin and calcification morphology. In addition, a single patient history variable,
age, was used. All features were scaled to the range of 0-1. This 3-input perceptron is shown in
Fig. 1. The perceptron had one weight per input (WI, W2, and W3) and a bias term (W4). The dot
product of input vector and the weight vector is passed through a non-linear activation function to
produce the output. The inputs were the two B1-RADSTM findings, calcification morphology (weight
W1) and mass margin (weight W2), and patient age (weight W3). The outputs of the perceptron
range from 0, which indicates a benign lesion, to 1, which indicates a malignant lesion. Perceptron
learning parameters were empirically optimized to minimize MSE: learning rate and momentum of
0.05 and 1000 iterations, with each iteration defined as a complete presentation of all training cases
with weight adjustment after each case.

2.3. Error surface analysis

In weight space, each weight defines a dimension. Each point in the four-dimensional weight space
represents a vector of weight values that define a distinct perceptron. When this perceptron is applied
to a data set of input cases, the resulting MSE or other measures of performance are functions of
the weights defining that perceptron. The error surface is the surface formed by evaluating the MSE
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Fig. 1. Architecture of the perceptron. The dot product of the input vector (calcification morphology, mass margin, age,
and bias) and the weight vector (Weight 1, Weight 2, Weight 3, and Weight 4) is passed through a non-linear activation
function (f(x)) to produce the output (Y).

as a function of a range of weight values in each dimension. Other measures of performance, such
as A, and 0.90A', can be used to form different surfaces in the same manner as the error surface.
For simplicity, we refer to all such surfaces of performance measures as "error surfaces". Notice

that plotting the error surface is not an optimization technique, but instead is used to show general
trends in the data. For a perceptron with only two weights, the error surface may be readily plotted
in the "z" or third dimension. In the current study, however, two-dimensional slices of the error
surface are plotted instead of attempting to visualize the four-dimensional error surface. In a slice,

two of the weights are varied to produce the surface, while the other two weights are held constant.
Fig. 2 shows an example of an error surface slice. For simplicity, in the remainder of the error
surface plots, the performance finction will be plotted as intensity as in Fig. 3A.

To generate these slices, a grid search through weight space was performed. The perceptron with

each combination of weights was applied to the data set. The MSE, ROC area (A,), or partial area
index (0.90A') of each perceptron is indicated by intensity. Although the MSE and ROC have been
reported in many previous studies, the 0.90A' is relatively less well studied. 0.90A' can be interpreted
as the mean specificity of the model over the given high sensitivity range. It has particular clinical
relevance in these examples of breast cancer CAD, where it is much more important to optimize
sensitivity in the uppermost portion of the ROC curve, rather than specificity in the leftmost portion
of the ROC curve. Note that while lower values for MSE indicate better perfornance, higher values

for the performance measures Az and 0.90A' indicate better performance.
The TPFoA'z was defined by Jiang et al. [10]. The partial area is the area under the ROC curve

from a given sensitivity (TPF 0 ) to 1.0, where TPF0 = 0.90 is typically used. The partial area index

(TPFA'z) is the partial area normalized by dividing by the constant (1 - TPF0 ). Note that the optimal
value of both A, and 0.9oA'z is 1.0, but the chance behavior is 0.5 for A, while it is 0.05 for o.9oAA'
at TPF0 = 0.90. The ROC analysis was performed using software modified and provided by Charles
Metz, University of Chicago. The Az and 0.90 A' were calculated using a modified version of the
LABROC4 software, which finds a maximum likelihood estimate of the area from a fit to the data.
The statistical comparisons were calculated using a modified version of the CLABROC software,
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Fig. 2. A MSE surface in weight space. The MSE is a function of the perceptron weights (WI, W2, W3, and W4). WI

and W4 were held constant.
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Fig. 3. The MSE surface in weight space. The MSE is a function of the perceptron weights (WI, W2, W3, and W4).
The MSE is shown as intensity. Darker gray indicates better performance. The slices through MSE surface are (A) W3
vs. W2, (B) W3 vs. Wi, and (C) WI vs. W2. The subplots are arranged such that folding them into a box provides a
way to visualize three of the weight dimensions.

which finds a maximum likelihood estimate of the areas for two classifications from fits to the two
data sets. An estimate of statistical significance is reported for differences between the fitted curves.
This estimate of significance includes the contribution from correlation of the input data.
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The grid search over the weights was done in the vicinity of weights identified as optimal by
training a perceptron to minimize the MSE of the data set. In other words, the training was used only
to narrow down the reasonable range of weights over which the grid search was performed. With
learning rate and momentum of 0.05 and 1000 iterations, the final weights were W1 = 1.65, W2 =
2.22, W3 =2.56, and W4 =-3.21. In order to simplify the visualization further, the bias weight W4
was always fixed at that 'central' value. Each two-dimensional slice was generated by varying two
of the feature weights while the bias and one remaining feature weight were held constant at the
aforementioned 'central' values. The three combinations resulted in an "exploded box" showing the
three-dimensional relationship between the three weights WI, W2, and W3. Each weight was varied
approximately over the range of the central value ±-150% of the central value. WI was varied from
-1.00 to 5.00. W2 was varied from -2.00 to 5.95. W3 was varied from -3.00 to 6.90.

3. Results

3.1. MSE vs. A,

Fig. 3 shows three two-dimensional slices through the MSE surface and Fig. 4 shows three
two-dimensional slices through the A. surface. Note that improved performance corresponds to min-
imizing MSE (darker grayscale value) but maximizing A, (brighter grayscale value). MSE is ex-
pected to range between 0 (perfect) and 0.5 (chance behavior), while A, ranges between 0.5 (chance)
and 1 (perfect). While the MSE and A, surfaces are clearly not the same, the minimum observed
on the MSE surface is in the same general location in weight space as the maximum

7 7- - --------

4- i 4- •
I- 3.

2 2.
00-

-2 -1 0• 1 6 -1 0 1 2 3 4
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0.66
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0.58.s.. ....... 0..54
-2 - 1 0 1 2 3 4 5 6 0 .

Fig. 4. The A, surface in weight space. The A, is a function of the perceptron weights (WI, W2, W3, and W4). The A,
is shown as intensity. Lighter gray indicates better performance. The slices through the A. surface are (A) W3 vs. W2,
(B) W3 vs. W1, and (C) WI vs. W2.
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Fig. 5. The 0.90Az surface in weight space. The o.9oAz is a function of the perceptron weights (WI, W2, W3, and W4).
The o.9oA_ is shown as intensity. Lighter gray indicates better performance. The slices through the 0.90A. surface are (A)
W3 vs. W2, (B) W3 vs. WI, and (C) WI vs. W2.

observed on the A, surface. The best solution corresponding to the global minimum on the MSE

surface, i.e. the central weights (WI = 1.65, W2 = 2.22, W3 = 2.56, and W4 = -3.21), has MSE
of 0.41 and A, of 0.80 - 0.02. The best solution corresponding to the global maximum on the A,
surface (WI = 1.65, W2 = 1.90, W3 = 2.40, W4 = -3.21, Fig. 4A) has MSE of 0.41 and A, of
0.80 ± 0.02. The difference in the A, between the solutions was not statistically significant (two tail
p = 0.14).

3.2. MSE vs. o.9oAl'

Fig. 3 shows three two-dimensional slices through the MSE surface and Fig. 5 shows three

two-dimensional slices through the o.9oA' surface. There is less correspondence in the general appear-
ance of the contours between the MSE and 0.90A' surfaces than was observed between MSE and Az

surfaces. The solution on the MSE surface, i.e. the central weights (WI= 1.65, W2=2.22, W3=2.56,
and W4 = -3.21) does not correspond to the best solution corresponding to a global maximum in
the o.9oA' surface (WI = 3.35, W2 = 2.22, W3 = 5.70, and W4 = -3.21, Fig. 5B). The solution on

the MSE surface has MSE of 0.41 and 0.90A' of 0.24 ± 0.05. The solution on the 0.90A' surface has
MSE of 0.58 and 0.90A' of 0.30±0.04. The difference in 0.90A' between the solutions was statistically
significant (two tail p = 0.006).

This same trend may be demonstrated by comparing a particular operating point, such as the
specificity for 95% sensitivity. The best MSE solution resulted in a specificity of 25% while the best
specificity solution resulted in a specificity of 31%. This difference in specificity at 95% sensitivity
was again statistically significant (p = 0.002).
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Fig. 6. Histograms of the ouitputs of the perceptron for the weights that correspond to (A) the minimal MSE and (B) the
maximal o19OAl.

The difference in the solutions on the MSE and 0.90A' surfaces is illustrated by comparing the
histograms of the outputs of the corresponding perceptrons (Fig. 6). Since the 0.90AZ measure
describes the high sensitivity region of the ROC curve, the outputs of the perceptron with the
highest 0.90A' tend to be higher than the outputs of the perceptron with the lowest MSE.

4. Discussion

The three metrics of performance studied here are important for different reasons. The MSE is
the metric that many models including perceptrons and ANNs attempt to optimize directly, while
the Az and 0.90A' have greater clinical significance. Consider the histograms (Fig. 6) of network
outputs of benign cases and malignant cases, where the network output of "0" indicates a benign
lesion and "1" indicates a malignant lesion. MISE is a measure of the how close the distribution
of benign cases is to a network output of "0" and how close the distribution of malignant cases is
to "I". The area under the ROC curve is a measure of the overlap of the distributions. A training
scheme that minimizes MSE, and so pulls the distributions to the edges, can also reduce the overlap
of the distribution, and so increases A,. It should be noted, however, that the MSE can decrease
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without an accompanying change in A,, because each increment in A. can only result from the
reversal of position for an adjacent pair of benign and malignant cases in the histogram. While a
full convergence to MSE = 0 will also result in A, = 1, the latter can be achieved with any arbitrary
MSE, as long as the two distributions do not overlap at all. In the current study, it was observed

that the weights that minimized MSE also maximized A,.
It should be noted that in this study an ROC curve was generated by applying a threshold to the

output node of the perceptron. By comparison, the method of Woods and Bowyer [23] scales the

bias weight for the nodes in the hidden layer of an artificial neural network. Since perceptrons lack
a hidden layer, their method would not be appropriate here.

In recent years, the sensitivity of breast cancer CAD techniques has been particularly emphasized,

since there is a considerably greater cost in missing or delaying the diagnosis of an actual cancer
(false negative) compared to referring a benign lesion to an unnecessary biopsy (false positive).

For a range of sensitivities (e.g., TPF0 from 0.9 to 1), the TPFoA'z can be thought of as an average
specificity [10]. As an aid to interpreting these surfaces, it is helpful to note that for low values of
the threshold TPF0 , the TPFoA'Z surface resembles the A, surface. Conversely, as TPF0 increases, the

TPFoAz surface resembles the specificity surface at a given high sensitivity level. Unlike MSE and
A,, o.90A'z is not symmetric in the sense that false negative and false positive cases do not contribute
to the measure in the same way. In this work, the solution on the 0.90A' surface was found to not
correspond well with the MSE solution. It should be noted that the differences in the weights that
optimize MSE vs. 0.90A' may be due in part to biases inherent to the reduced amount of data that
is associated with the high sensitivity region of the ROC curve.

If it is thought that Az is a suitable measure of performance of CAD systems for breast cancer,
then this work can be interpreted as a reassurance that classifiers trained to minimize MSE may
also maximize the measure of interest. This provides some justification for avoiding the task of

attempting to directly optimize model performance according to Az. Note that optimizing for A, by
gradient descent techniques is not straightforward since A, is not a continuous function.

However, if 0.90A' corresponding to a given high level of sensitivity is a better measure of the
quality of CAD systems for breast cancer, then this work demonstrates that a classifier trained to
minimize MSE may provide an inferior solution. Alternative methods of identifying good weights for

a perceptron or multi-layer network should be considered, such as evolutionary computing techniques
that employ stochastic optimization. Our conclusions are consistent with related previous work that

compared optimization techniques. As described in the introduction, Kupinski et al. found that using
a perceptron (logistic discriminant) trained by a genetic algorithm instead of a classically trained
perceptron resulted in no significant change in A,, but a significant improvement in 0.90A' [12].

5. Summary

Perceptrons, like more complicated backpropagation artificial neural networks, are typically trained
to minimize mean square error (MSE). In computer-aided diagnosis (CAD) applications, model
performance is usually evaluated according to other more clinically relevant measures from receiver

operating characteristic (ROC) analysis. The purpose of this study was to investigate the relationship
between MSE and the area (Az) under the ROC curve and the partial ROC area (0.90A') under the
high sensitivity portion of the ROC curve. A perceptron was used to predict whether or not breast
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lesions were malignant based on two mammographic findings and patient age. For each performance

measure, the error surface in weight space was visualized. Comparison of the surfaces indicated that

minimizing MSE tended to maximize A,, but not 0.90A'. If it is important to maximize 0.90A', then

predictive models trained to minimize MSE may provide inferior solutions.
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study from a commercial CAD vendor Of the 1,453 cases, 508 (35%) were Specifically, the BI-RADS features col-
(12). CAD systems for diagnosis that are found to be malignant at biopsy. For the lected were mass margin, mass shape, mass
based on features automatically extracted purposes of this study, a case was consid- density, mass size, calcification morphol-
from the images are typically designed ered a "mass case" if mass features were ogy, calcification distribution, and associ-
for either masses or calcifications alone, present and no values were missing for ated and special findings. Although not a
We are unaware of any previous attempts any of the mass or calcification features. part of the BI-RADS specification, the num-
to compare the performance on masses Likewise, a case was considered a "calci- ber of calcifications is routinely collected at
and calcifications within a single study. fication case" if calcification features both institutions and was also included.
Given the differences in databases and were present, but no mass features were The number of calcifications was indicated
techniques with CAD systems for diagno- present, and no values were missing for as no calcifications present, fewer than
sis, direct comparison of the published any of the mass or calcification features. five, five to 10, or more than 10 calcifica-
performances on masses and calcifica- There were 615 cases with masses, includ- tions present. The location of the lesion
tions is not possible. However, the au- ing 65 cases with calcifications in addi- was also included and was encoded as pos-
thors of classification studies on masses tion to a mass. There were 622 cases with terior, central, axillary tail, subareolar,
(13,14) report performances that are bet- calcifications that did not have masses as lower inner quadrant, lower outer quad-
ter than those reported in studies on cal- well. The PPVs for the mass cases (223/ rant, upper inner quadrant, or upper outer
cifications (15,16). CAD systems for diag- 615 = 36%) and the calcification cases quadrant.
nosis that are based on findings extracted (209/622 = 34%) were similar (P = .65, X2  In addition to the BI-RADS findings,
by radiologists are often trained and eval- test for independence; 95% CI for malig- patient age was collected. For the cases
uated over heterogeneous data sets in- nancy fraction = -0.027, 0.080). The re- from Duke University Medical Center,
cluding both masses and calcifications, maining 216 cases consisted of cases with the mean age was 56 years, with a range
and the performances on masses and cal- neither a mass nor calcifications (n = of 23-87 years. For the cases from the
cifications are not reported separately 132) and cases with incomplete descrip- University of Pennsylvania Medical Cen-
(17-20). The purpose of our study was to tions of the mass or calcifications that ter, the mean age was 55 years, with a
compare the performance of a CAD sys- were present (n = 84). A mass was con- range of 17-92 years. Age is known to be
tem for diagnosis of already detected le- sidered incompletely described if there an important risk factor for breast cancer.
sions, based on radiologist-extracted were missing values for some of the mass Increasing age is associated with increas-
findings on masses and calcifications. or calcification features. Likewise, a calci- ing risk of breast cancer; a 60-year-old

fication was considered incompletely de- white American woman has a 14-fold in-
MATERIALS AND METHODS scribed if there were missing values for crease in her chances of developing breast
Data some of the calcification features. The cancer relative to a 30-year-old white

cases without a mass or calcifications American woman (5). In agreement with
Original studies were performed in ac- were described by other findings, such as the epidemiologic data, some evidence ex-

cordance with standard clinical indica- architectural distortion. When the value ists that age is a particularly valuable input
tions. All data from human subjects were was missing for a feature, it was encoded in our predictive models (22).
collected with approval from appropriate in the same manner as if the finding was For the cases from Duke University
institutional review boards, which also not present. All 1,453 cases, including Medical Center, the mammographers in-
waived the requirement for informed pa- the 216 cases with neither a mass nor dicated on a scale of 1-5 their assessment
tient consent. calcifications, were used in building the of the likelihood of malignancy. These

We collected data on 1,530 nonpalpable CAD models for diagnosis. assessment data were not available for
mammographically suspicious breast le- A second data set consisted of 1,000 the cases collected at the University of
sions on which biopsy (core or exci- consecutive mammographically suspi- Pennsylvania Medical Center. An assess-
sional) was performed from 1990 to 2000 cious breast lesions on which excisional ment of 1 indicated benign findings; 2,
at Duke University Medical Center. The biopsy was performed from 1990 to 1997 likely benign findings; 3, indeterminate
data were collected over several discon- at the University of Pennsylvania Medi- findings; 4, likely malignant findings;
tinuous time periods, but were collected cal Center. Experienced mammographers and 5, malignant findings. The mam-
consecutively within each time period, summarized each case according to the mographer's assessment of malignancy
Of the 1,530 cases, 61 were removed be- BI-RADS lexicon (21). Each of the cases was collected at the same time as the
cause it was not certain that they were was read retrospectively by one of 11 BI-RADS descriptors. As mentioned, some
nonpalpable. In addition, 16 cases were readers. Of the 1,000 cases, 396 (40%) of the cases were read retrospectively and
removed because the radiologist's assess- were found to be malignant at biopsy, some were read prospectively, and al-
ment of the likelihood of malignancy There were 481 cases with masses, includ- though several mammographers partici-
was unavailable. Thus, the primary data ing 10 cases with calcifications in addi- pated in the study, each case was read by
consisted of 1,453 approximately consec- tion to a mass. There were 449 cases with a single mammographer. Notice that this
utive, nonpalpable, mammographically calcifications that did not also have assessment is not the same as the BI-
suspicious breast lesions. Experienced masses. The PPV observed for the masses RADS clinical assessment. Moreover, this
mammographers summarized each case (191/481 = 40%) was the same as that for assessment does not directly correspond
according to the Breast Imaging Report- the calcifications (178/449 = 40%). There to the clinical task of deciding whether a
ing and Data System (BI-RADS) lexicon were 70 other cases, most (n = 68) of patient should be referred to biopsy or
(21). Each of the cases was read by one of which were cases with incompletely de- follow-up. Since all the cases in the data
seven readers. The 475 cases collected scribed masses or calcifications. All 1,000 set were subjected to biopsy, the mam-
from 1990 to 1996 were read retrospec- cases, including the incompletely de- mographers were by definition perform-
tively, and the 978 cases collected from scribed ones, were used in training the ing with 100% relative sensitivity and 0%
1996 to 2000 were read prospectively. CAD models for diagnosis. relative specificity on this data set (PPV,
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Figure 1. ROC curves for the mammographers' assessment of the like- Figure 2. ROC curves for the BP-ANN in the cases from Duke Uni-
lihood of malignancy in the cases from Duke University Medical Center. versity Medical Center. BP-ANN was more accurate for masses than
The mammographers' assessment was more accurate for masses than for for calcifications. FPF = false-positive fraction, TPF = true-positive
calcifications. FPF = false-positive fraction, TPF = true-positive fraction. fraction.

508/1,453 = 35%). (Notice that these rel- can help alleviate the problem of local curves. ROC curves enable the user to
ative measures are not indicative of the minima. A momentum term was used, evaluate a model in terms of the trade-
radiologists' performances over a general which can also help the network escape offs between sensitivity and specificity

screening or diagnostic mammography local minima. The training cases were (26,27). The performance of classification
patient population in which most actu- presented to the network in a round- methods can be evaluated by directly

ally benign cases are correctly referred to robin (leave-one-out) manner. To avoid comparing their ROC curves or by corn-
follow-up.) Nevertheless, their assessment overtraining, network training ended paring indices calculated from their
of the likelihood of malignancy is useful as when the average testing error on the left- curves. The most commonly used index
an approximation to an internal interme- out cases began to increase (early stop- is the area under the ROC curve (A.).
diate state in the decision process. ping). The network parameters (learning Notice that the values for A. range from

rate, momentum, and number of hidden 0.5 for chance to 1.0 for a perfect classi-

Artificial Neural Network nodes in the single hidden layer) were fier.
empirically optimized. The custom neu- In breast cancer diagnosis, the decision

A feed-forward back-propagation artifi- ral network software used was written by task is whether to refer a suspicious case

cial neural network (BP-ANN) can learn a members of our laboratory and has been to biopsy or recommend follow-up imag-
function mapping inputs to outputs by used in several previous publications (22). ing. A true-positive finding would be an
being trained with cases of input-output actual cancer that was correctly referred
pairs (23-25). The network inputs were Linear Discriminant Analysis to biopsy. A true-negative finding would
the BI-RADS features and patient age. The biosy Actuenegatiefinding woul
network had a single hidden layer and Linear discriminant analysis (LDA) was be an actual benign lesion that was cor-
one output node indicating malignancy, performed on the data collected at Duke rectly recommended for follow-up imag-
Each neuron in the network used a logis- University Medical Center. LDA is a corn- ing. The cost of missing a cancer (false-
tic activation function, y = 1/(1 + e-x). mon statistical technique for linear clas- negative finding) far outweighs that of an

The BP-ANN was trained to minimize the sification. The same input findings were unnecessary benign biopsy (false-positive

sum-of-squares error by using the back- used, and the cases were used in a round- finding). As a result, we were most con-

propagation algorithm (23-25). A binary robin fashion as with the BP-ANN. The cerned about the high sensitivity region

variable indicating benign or malignant LDA was computed by using the imple- of the curve, so we also used the partial

was used as the network targets. The tar- mentation in SAS software (SAS Institute, area index (o. 9 oA,') calculated on that

get values were clipped to 0.1 and 0.9 to Cary, NC). portion of the curve (true-positive frac-

ensure that the network weights re- tion, 0.9-1.0) (28,29). The partial area

mained finite (sigmoid units cannot pro- Receiver Operating Characteristic index is the partial area normalized such
duce 0 or 1). The network weights were that it ranges from 0.05 for chance to 1.0

updated after the presentation of each The models were evaluated in terms of for a perfect classifier. ROC analysis was

case (stochastic gradient descent), which their receiver operating characteristic (ROC) performed by using software modified and
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Figure ves for the LDA in the cases from Duke Univer- Figure 4. ROC curves fid tin (0 9 A1  i 0.11 from the Univer-
sity Medical Center. LDA was morere for masses than for sity of Pennsylvania Medical Center. BP-ANN was more accurate for
calcifications. FPF = false-positive fraction, TPF = true-positive masses than for calcifications. FPF = false-positive fraction, TPF =

fractiond true-positive fraction.

provided by Charles Metz at the University Notice, however, that the actual clinical that for the calcifications (Az M i 0.62 -
of Chicago. The modifed LABROC4 soft- performance of the ers was 0.02). The difference in the partial area
ware (maximum likelihood, semipara- essentially the same for masses (PPV = index between the masses (ca.esAf' =
metric fit) was used to calculate the ROC 223/615 = 36%) and calcifications (PPV = 0.61 m 0.04) and thatcfr e calcifica-
curves and the curve indices, Al and 209/622 = 34%, P = .65, 2 test for inde- tions (h.9e A' = 0.11 f t 0.02) was also
o.9ofA'. Statistical comparisons were pendence; 95% CI for malignancy frac- significant (P < .01). The ROC curve over
made with use of a standard z test since tion = -0.027, 0.080). Notice as well that all of the cases was intermediate (A.

there was no correlation between the thsecacifcato was read by a single mam- 0.80 ± 0.01, o.9pAr' wt 0.28 ta 0.03).
mass and calcification cases. A P value of mographer and the study included sevenless than .01 was considered to indicate a readers, the assessment was pooled across University of Pennsylvania Medical

statistically significant difference r mammographers. Center: BP-ANN
BP-ANNperformnance.--The BP-ANN de- The BP-ANN developed by using

RESULTS veloped by using round-robin samplin g  r ound-robin sampling on the cases from
on all of the cases from Duke University the University of Pennsylvania MedicalDuke University Medical Center Medical Center also performed better on Center also performed better on the

Mammographers'tassessment.-The mam- he mase t 0 02 calcifications (Fig 2). masses than on the calcifications (Fig 4).

mographers' assessment of the likelihood The difference in the ROC area for the There was a significant difference (P <

of malignancy (five-point scale) was used masses (A_ = 0.93 8 0 0.01) and that for .01) in the ROC area of the masses (A. =

as a decision variable, and ROC curves were the calcifications (An = 0.63 - 0.02) was 0.88 r 0.02) compared with that for the

formed for masses and calcfications sepa- significant (P < .01). The difference in calcifications (Af = 0.76 ± 0.02). There

rately (Fig 1). There was a significant differ- the partial area index was also significant was also a significant difference (P < .01)

ence (P < .01) in the ROC areas for the (P < .01) between the masses (t.hAn ' = in the partial area index of the masses

masses (A. = 0.94 ± 0.01) compared with 0.62 o 0.05) and the calcifications (F3.9i. e' = 0.45 s0.05) versus the calcifi-
that for the calcifications (A., = 0.74 -± (o.9oAz' = 0.10 -± 0.02). The ROC curve cations (0.9o,4.' =0.23 ± 0.04). The ROC

0.02). There was also a significant differ- over all of the cases was intermediate curve over all of the cases was intermedi-
ence (P < .01) in the partial area index for (Az = 0.82 -_ 0.01, o.9oAý' = 0.30 ±- 0.03). ate (A,, = 0.82 -± 0.01, o.9oAz' = 0.34 +

the masses (o.9o)Az' = 0.62 -± 0.06) versus Linear discriminant analysis.--The round- 0.03).

that for the calcifications (o.9o0,'= 0.17 ± robin LDA classifier on the cases from
0.04). The ROC curve over all of the cases Duke University Medical Center also per- DISCUSSION
was intermediate (A, = 0.85 -± 0.01, formed better on the masses than on the
o.9oA,' = 0.34 -± 0.04). The assessment of calcifications (Fig 3). There was a signifi- In this study, the performances of a
the mammographers was more accurate cant difference (P < .01) in the ROC area breast cancer CAD model on mass and

for the masses than for the calcifications. for the masses (A, = 0.91 _± 0.01) versus microcalcification lesions were com-
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Abstract

The purpose of this study was to identify and characterize clusters in a heterogeneous breast cancer
computer-aided diagnosis database. Identification of subgroups within the database could help
elucidate clinical trends and facilitate future model building. A self-organizing map (SOM) was used
to identify clusters in a large (2258 cases), heterogeneous computer-aided diagnosis database based
on mammographic findings (BI-RADSTM ) and patient age. The resulting clusters were then
characterized by their prototypes determined using a constraint satisfaction neural network (CSNN).
The clusters showed logical separation of clinical subtypes such as architectural distortions, masses,
and calcifications. Moreover, the broad categories of masses and calcifications were stratified into
several clusters (seven for masses and three for calcifications). The percent of the cases that were
malignant was notably different among the clusters (ranging from 6 to 83%). A feed-forward back-
propagation artificial neural network (BP-ANN) was used to identify likely benign lesions that may
be candidates for follow up rather than biopsy. The performance of the BP-ANN varied considerably
across the clusters identified by the SOM. In particular, a cluster (#6) of mass cases (6% malignant)
was identified that accounted for 79% of the recommendations for follow up that would have been
made by the BP-ANN. A classification rule based on the profile of cluster #6 performed comparably
to the BP-ANN, providing approximately 25% specificity at 98% sensitivity. This performance was
demonstrated to generalize to a large (2177) set of cases held-out for model validation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is considerable interest in the use of computational techniques to aid in the
detection and diagnosis of breast cancer [5,8,26]. Most computer-aided diagnosis (CAD)
studies, including this one, focus on mammography since it is the primary tool for the
detection of breast lesions and the subsequent decision to biopsy suspicious lesions. The
decision to biopsy is complicated by the fact that breast cancer can present itself in a variety
of ways on a mammogram and there is considerable overlap in the appearance of benign
and malignant lesions. CAD systems for the decision to biopsy that are based on findings
extracted by radiologists are often trained and evaluated over heterogeneous databases that
reflect this variability in the morphological appearance of suspicious breast lesions
[1,7,28]. We have recently shown that a CAD tool trained on such a heterogeneous
database can perform very differently on two broad subgroups which constitute most of the
currently biopsied lesions: masses and microcalcifications [17]. In particular, we observed
that the performance was significantly better on masses than on calcifications.

In this study, we used a self-organizing map (SOM) [13] to identify clusters in a
heterogeneous breast cancer CAD database. SOM is an unsupervised learning method that
relates similar input vectors to the same region of a map of neurons. To the best of our
knowledge, SOMs have not been used to identify clusters in a CAD database similar to the
one presented here. SOMs have been used for other tasks in breast cancer CAD such as a
benchmark for model selection [27] and to predict biopsy outcome [4].

Once the SOM was used to identify the clusters, a constraint-satisfaction neural network
(CSNN) was used to characterize the clusters by determining a profile for each cluster.
Briefly, the CSNN is a Hopfield-type network of neurons arranged in a non-hierarchical
way (Fig. 1). There are symmetric, bi-directional weights between all pairs of neurons but
there are no reflexive weights. The CSNN operates as a nonlinear, dynamic system that
tries to reach a globally stable state by adjusting the activation levels of the neurons under
the constraints imposed by the a priori fixed weight values. A cluster "profile" provides a
description of a "typical" case in the cluster. We have previously introduced CSNN for
predicting biopsy outcome and as a data mining tool for breast cancer CAD databases [25].

A feed-forward back-propagation artificial neural network (BP-ANN) is a classic
technique that is commonly used in breast cancer CAD systems. Consequently, a BP-
ANN was used to predict the biopsy outcome [2,10,21] and the performance of the BP-
ANN was compared on the clusters identified by the SOM and profiled by the CSNN.

A clustering algorithm such as an SOM followed by a cluster characterization method
such as CSNN profiling could serve as tools in the initial phases of a divide-and-conquer
approach to the computer-aided diagnosis of breast cancer. Both modular and ensemble
methods could be used for a divide-and-conquer approach. A modular system uses multiple
classifiers to solve a classification problem by partitioning the input space into smaller
domains, each of which is handled by a local model [24]. The local models can be thought
of as experts for a particular kind of case. Ensemble methods are resampling schemes in
which the same cases are used in training multiple experts, whose predictions are then
combined [24]. Such approaches may be justified in light of recent results in this field.
Simple ensembles of classifiers using voting or averaging to combine their predictions have
shown promise in computer-aided detection of breast masses [14,22,31]. Zheng et al.
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Fig. 1. Schematic of the constraint satisfaction neural network (CSNN). Notice that the neurons are fully
interconnected with no reflexive weights.

employed a modular scheme, in which the data were partitioned by a difficulty measure, for
computer-aided detection of breast masses with encouraging results [30]. Zheng et al. also
investigated a promising ensemble of modular models, formed by taking the average of the
predictions from modular models in which the data were partitioned using three features
[29]. Huo and coworkers described a modular system, in which the data were partitioned by
a spiculation measure, which was superior to a general image-based computer-aided
diagnosis system [11,12]. Finally, we have recently demonstrated that a BI-RADSTM-
based CAD tool built on a heterogeneous database can perform very differently on two
broad subgroups of lesions, masses and microcalcifications [17]; the CAD tools inves-
tigated performed better on masses than on calcifications. In all of the examples listed here,
a priori knowledge was used to partition the data into subsets. Unsupervised learning may
provide an alternate avenue to a priori knowledge for identifying subsets in the data that
should be handled separately in the development or evaluation of computer-aided
diagnosis or detection systems.

2. Materials and methods

2.1. Data

Approximately half of the available data (4435) were used for model development
(2258) in this study in order to withhold the remaining data for additional model validation
(2177); the data were randomly partitioned into the training and validation sets, but
attention was paid to key summary statistics such as the fraction of cases that were
malignant in each set. For each lesion, the benign or malignant status from pathologic
diagnosis was known. The overall malignancy fraction was 43%. In the next few
paragraphs, we describe the data (2258) used for model development in greater detail.

The first data set consisted of 751 non-palpable, mammographically suspicious breast
lesions that underwent biopsy (core or excisional) at Duke University Medical Center from
1990 to 2000. The data collection procedures have been previously described [16]. Briefly,
expert mammographers described each case using the breast imaging and reporting data
system (BI-RADSTM ) lexicon [20]. Each of the cases was read by one of seven readers.
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When a lesion could be described by multiple descriptors (e.g. pleomorphic and punctate),
the mammographers were requested to report the descriptor that was most suspicious for
malignancy (e.g. pleomorphic). Of the 751 cases, 260 (35%) were malignant.

The second data set consisted of 501 mammographically suspicious breast lesions that
underwent excisional biopsy at the University of Pennsylvania Medical Center from 1990
to 1997. The data collection procedures have been previously described [ 16]. Briefly, each
of the cases was read by one of 11 expert mammographers who described each case using
the BI-RADSTM lexicon [20]. When a lesion could be described by multiple descriptors
(e.g. pleomorphic and punctate), the mammographers were requested to report the
descriptor that was most suspicious for malignancy (e.g. pleomorphic). Of the 501 cases,
200 (40%) were malignant.

The third data set consisted of 1006 biopsy-proven breast lesions randomly selected
from the Digital Database for Screening Mammography [9]. Expert mammographers
described each case using the BI-RADSTM lexicon [20]. Lesions that were described by
multiple descriptors were encoded for our purposes using the descriptor that was most
suspicious for malignancy. Of the 1006 cases, 522 (52%) were malignant.

Specifically, the six BI-RADSTM features collected describe the mass margin, mass
shape, calcification morphology, calcification distribution, associated, and special findings.
Missing values were encoded as zero. Each BI-RADSTM feature was encoded using
uniformly scaled rank ordered categories (Table 1). For example, when a mass is present
for a case, the mass margin can take on one of five values: well circumscribed (1),
microlobulated (2), obscured (3), ill-defined (4), or spiculated (5). In addition to the BI-
RADSTM features, the patient age was collected, for a total of seven features.

2.2. Self-organizing map

A self-organizing map relates similar cases (input vectors) to the same region of a map of
neurons [13]. The SOM was computed using the SOM toolbox in MATLABO (The
MathWorks Inc., Natick, MA). The basic SOM consisted of 16 neurons arranged in a single
layer in a 2-D square grid of 4 x 4 neurons, but different configurations were considered.
For each case, the Euclidean distance between the case and each neuron was calculated
based on the seven input features (the biopsy outcome was not provided to the SOM). For
input to the SOM, each feature was scaled by subtracting the mean and dividing by the
standard deviation, resulting in each scaled feature having mean zero and standard
deviation of one. After the most similar neuron was determined the neurons in its
neighborhood were identified. The neighborhood of a neuron was defined as all the
neurons within a given link distance of the matched neuron. All the neurons in the
neighborhood were adjusted to have feature values closer to the current case. The amount
that the neuron weights were adjusted was controlled by the learning rate. The learning
rates and distance threshold values used were the default values for the SOM toolbox.

2.3. Constraint satisfaction neural network

After the clusters were identified, a CSNN was used to determine the profiles of the
clusters [23,25]. Custom software in the C language was used to implement the CSNN and
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has been previously described [25]. The Lyapunov energy function was used as a measure
of the network stability. It was found that 1000 iterations were sufficient to achieve
stability. The weights were predetermined using autoassociative backpropagation neural
networks (auto-BP). In keeping with our previous work [25], the auto-BP networks were
trained with a learning rate of 1.0 for 100 iterations and the root mean squared training error
was approximately 0.1 (network outputs between 0 and 1).

For each cluster, a CSNN was used to generate a profile. Each category of the categorical
BI-RADSTM features corresponded to a binary variable and associated neuron. For
example, the mass margin with its five non-zero categories was represented by five
separate neurons. Patient age was translated into a discrete variable with five levels (<40
years, 40 < x < 50, 50 < x < 60, 60 < x < 70, >70 years) [25]. An additional neuron
was used to signify cluster membership. The activation level of the neuron indicating
cluster membership was set to the maximal value and the other neurons were allowed to
evolve until the network reached a stable state. The feature neurons that were activated
defined the profile of the cluster. A profile is a list of feature values that succinctly
summarizes the cluster and defines a "typical" case (e.g. mass margin is well circum-
scribed, mass shape is round, and patient age is between 50 and 60 years). All cases in the
cluster do not exactly match the profile; there is still a distribution of feature values. Notice
that unlike common summary statistics, such as the cluster centroid, the CSNN profile
implicitly includes feature selection; only features deemed relevant to the network for
describing a cluster are included.

2.4. Back-propagation artificial neural network (BP-ANN)

A feed-forward back-propagation artificial neural network (BP-ANN) was used to
predict the biopsy outcome from the mammographic findings and patient age. The BP-
ANN was trained to minimize the sum-of-squares error using the back-propagation
algorithm [2,10,21]. The network had a single hidden layer of 14 neurons and each
neuron in the network used a logistic activation function. The network inputs (7) were the
BI-RADSTM features and patient age. Network inputs were rescaled from 0 to 1 (by
subtracting the minimum value and dividing by the maximum minus the minimum). The
biopsy outcomes were the network targets; there was one output node indicating malig-
nancy. The 2258 cases were presented to the network in a round-robin manner (leave-one-
out, k-fold cross-validation with k = N) and training ended before the average testing error
on the left-out cases began to increase. The custom neural network software used was
written in C++ by members of our laboratory, and the training and testing process has been
reported previously [ 15,17].

2.5. Receiver operating characteristic

Receiver operating characteristic (ROC) curves can be used to show the trade-off in
sensitivity and specificity achievable by a classifier by varying the threshold on the output
decision variable [18,19]. The area under the ROC curve is often used as a measure of
classifier performance. In evaluating models for diagnosing breast cancer, all sensitivities
are not of equal interest. Only techniques that perform with very high sensitivity would be
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clinically acceptable since missing a cancer (false negative) is generally considered much
worse that an unnecessary benign biopsy (false positive). Thus, particular attention was
paid to the specificity at 98% sensitivity.

The ROC curves were calculated non-parametrically. P-values and standard deviations
on the specificity at 98% sensitivity were estimated by bootstrap sampling on the decision
variable [6].

3. Results

Fig. 2 illustrates the arrangement of the neurons in the SOM. The set of cases that were
mapped to a neuron defined a cluster. Fig. 2 shows the number of cases that were mapped to
each neuron, i.e. the number of cases in each cluster. The fraction of the cases in each
cluster that were malignant is also shown in Fig. 2 (bottom number in italics). The
malignancy fraction is not shown for the clusters with fewer than 10 cases (#5, 12, and 15),
on the assumption that no meaningful conclusions can be drawn from such a small number
of cases. Inspection of the cases mapped to these clusters (#5, 12, and 15) revealed that the
cases are rare for this database. They included cases with findings that were seen with a
very low prevalence in the set (e.g. special finding of intramammary lymph node) or
reflected incomplete or inconsistent data (e.g. the calcification morphology was described
but calcification distribution feature was not reported). Together these three clusters
comprise only 0.5% of the cases. Therefore, no further analysis was performed on these
clusters. Recall that the SOM was not provided with the biopsy outcome information. The
differences in the malignancy fraction are a reflection of differences in the BI-RADSTM

features and patient age between the clusters. Cluster malignancy rates near 50% do
contain some information since the overall malignancy fraction was 43%. Notice that there

227 1 378 13 L595

38% 39% 68%

9 10 1I 1
313 • 29 95 1
52% 31% 69%

8 301 89 194
6% 24% 71%

68 L• 91 L• 190 212
2S% 14% 45% 83%

Fig. 2. Index of the neurons in the 4 x 4 map. Each neuron defined a cluster. The number of cases that were
mapped to each neuron, i.e. the number of cases in each cluster (normal type), and the fraction of the cases in
each cluster that were malignant (italics) is shown. Malignancy fraction data not shown for the clusters with very
few cases. Over all, 43% of the cases were malignant. Information regarding the main features of the cases in
each cluster is shown in Figs. 4 and 5.
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Fig. 3. (a) The index of the neurons in the 3 x 3 map; (b) Comparison of the clusters identified by the 3 x 3 and
4 x 4 SOMs. For each case, the neuron it mapped to was determined for each SOM. The number of cases for
each pair of clusters between the two SOMs was plotted, the size of the circle indicates the number of cases. The
more large bubbles that are present in such a plot, the more the SOMs agreed on the clustering of the cases.
Linear trends (i.e. bubbles lining up along the diagonals) indicate that the same cases are being mapped to the
same region in the two SOMs; (c) The index of the neurons in the 5 x 5 map; (d) Comparison of the clusters
identified by the 5 x 5 and 4 x 4 SOMs. For each case, the neuron it mapped to was determined for each SOM.
The number of cases for each pair of clusters between the two SOMs was plotted; the size of the circle indicates
the number of cases. The more large bubbles that are present in such a plot, the more the SOMs agreed on the
clustering of the cases. Linear trends (i.e. bubbles lining up along the diagonals) indicate that the same cases are
being mapped to the same region in the two SOMs.

is generally a higher incidence of malignant lesions in the clusters on the right-hand side of
the map.

Fig. 3 shows the effect that changing the SOM architecture has on the clusters identified.
Alternative architectures allow one to vary the number of neurons as well as their
topological layout, thus potentially allowing for variations in the complexity of the model.
One alternative to a 4 x 4 SOM is a smaller but still square 3 x 3 SOM (Fig. 3a). In Fig. 3b,
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Fig. 4. The cluster profiles generated by the CSNN for the clusters identified by the 4 x 4 SOM (cluster number
in upper right comer). A cluster "profile" provides a description of a "typical" case in the cluster. Profiles were
not computed for neurons #5, 12, and 15 which had very few cases mapped to them. The percent of the cases
that were malignant is shown in the lower right-hand comer; refer to Fig. 2.

the clusters of the 3 x 3 and 4 x 4 SOMs are compared using a bubble plot. For each case,
the neuron it mapped to was determined for each SOM. The number of cases for each pair
of clusters between the two SOMs was plotted; the size of the circle indicates the number of
cases. The more large bubbles that are present in such a plot, the more the SOMs agreed on
the clustering of the cases. Similarly, Fig. 3c and 3d show the comparison with a 5 x 5
SOM. Linear trends (i.e. bubbles lining up along the diagonals) indicate that the same cases
are being mapped to the same region (e.g. upper right-hand area) in the two SOMs. In
addition to square topologies, other layouts were also investigated which utilized approxi-
mately the same number of neurons. Comparisons were made to a 2 x 8 SOM and to a
three-dimensional SOM of 2 x 3 x 3 neurons, both with approximately the same number
of neurons as the 4 x 4 square SOM.

For the 4 x 4 SOM, the cluster profiles generated by the CSNN are shown in Fig. 4. Each
cell in the table represents the feature categories that were dominant or most strongly
associated with the cases matching that cluster. Profiles were not computed for the clusters
with very few cases. The mass cases are distributed over neurons #2, 3, 4, 6, 7, and 8. The
profiles of neurons #9, 13, 14, and 16 indicate that those clusters contain microcalcifica-
tions. Neuron #1's profile indicates that that cluster is comprised of focal asymmetric
densities. Note that the profile for neuron #10 includes only the age variable. The profile for
neuron #11 reveals that the lesions in that cluster are architectural distortions.

An alternative approach to generating cluster profiles is to compute summary statistics
such as the feature mode (or mean for real-valued features such as age). Fig. 5 shows the
mode profiles of the clusters identified by the 4 x 4 SOM. For the most part, there is
considerable agreement between the CSNN and mode profiles. Most of the differences
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Fig. 5. The cluster profiles generated by the computing the mode the features (mean for age) for the clusters
identified by the 4 x 4 SOM (cluster number in upper right comer). A cluster "profile" provides a description of
a "typical" case in the cluster. Profiles were not computed for neurons #5, 12, and 15 which had very few cases
mapped to them. Features for which the mode value indicated that the feature was absent were omitted (e.g.
mass margin = no mass). The percent of the cases that were malignant is shown in the lower right-hand corner;
refer to Fig. 2.

correspond to adjacent categories in the features (Table 1) where the CSNN has selected the
second most prevalent value for the profile. However, using multiple methods to summar-
ize the clusters may be beneficial. For example, the CSNN profile of neuron #16 (Fig. 4)
does not include any mass features yet the feature mode profile (Fig. 5) shows that the mass
features are usually non-zero. In fact, inspection of the cases in the cluster defined by
neuron #16 reveals that they are calcified masses. Conversely, the CSNN profile for neuron
#10 (Fig. 4) includes only the age variable while the mode profile's (Fig. 5) inclusion of
values for the calcification variables may be misleading for this small cluster (N = 29)
where there is little dominance by any single value.

A BP-ANN was trained to predict the biopsy outcome from the BI-RADSTM features
and patient age. Fig. 6 shows the ROC curve for the BP-ANN. The SOM can also be used to
generate a malignancy prediction [4]. For each case, the prediction was the fraction of the
cases that were malignant in the cluster that the case was mapped to by the SOM. For
example, if a case belonged to cluster #4 in which 83% of the cases were malignant, then
the classifier output for that case would be 0.83. Notice that using this approach limits the
number of operating points on the non-parametric ROC curve to the number of clusters
with unique malignancy fractions minus one (Fig. 6). The performance at the highest
sensitivities was comparable. In particular, at 98% sensitivity the SOM operates with
0.26 ± 0.03 specificity and the BP-ANN operates with 0.25 ± 0.03 specificity (P = 0.93).

Fig. 7 lists how the BP-ANN trained on all the cases performs in terms of the BP-ANN's
recommendations for follow up instead of biopsy on the subsets identified by the SOM. A
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Fig. 6. ROC curves for the BP-ANN and the SOM. For each case, the prediction from the SOM was the fraction
of the cases in the cluster it belonged to that were malignant.

threshold was applied to the BP-ANN outputs such that the overall sensitivity was
approximately 98% (965/982) with resulting specificity of approximately 24% (303/
1276). In other words, 320 cases (303 actual negatives and 17 actual positives) fell below
the threshold. These 320 cases that the BP-ANN would have recommended for follow up

15•26 2 ZjLI j

Fig. 7. Comparison of the performance of the BP-ANN trained on all the cases on the clusters identified by the
SOM. For each cluster the number of true negatives (normal type) and the number of false negatives (italics) is
shown.
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are shown in Fig. 7 according to which SOM cluster they belonged. Notice that there is
considerable variability in the performance on the clusters. In particular, the majority of the
cancers that the BP-ANN would have referred to follow up (11/17 = 65%) and the
majority of the benign lesions that the BP-ANN would have spared biopsy (242/303
80%) were in the cluster defined by neuron #6.

These interesting results with the cluster defined by neuron #6 suggested that a simple
rule-based approach could be valuable. We developed a classification rule based on the
cluster profiles (Figs. 4 and 5) of neuron #6 and a classification and regression tree (CART)
[3] model for mass cases using the implementation in S-PLUS® (Insightful Corp., Seattle,
WA). The classification rule was: if the mass margin was well-circumscribed or obscured
and the age was less than 59 years and there were no calcifications, associated findings, or
special findings, then do not biopsy, otherwise do biopsy. On the 2258 training cases, this
rule gave 961/982 = 98% sensitivity and 336/1276 = 26% specificity. In other words,
this rule performed comparably to the BP-ANN with a threshold of 0.1842
(965/982 = 98% sensitivity, 303/1276 = 24% specificity).

The performance of the BP-ANN and the classification rule developed from data mining
were evaluated on the 2177 cases withheld for model validation. On the validation set, the
classification rule gave 886/904 = 98% sensitivity and 339/1273 = 27% specificity and
the BP-ANN with a threshold of 0.1842 gave 884/904 = 98% sensitivity and 296/1273 =
23% specificity. Thus, both the BP-ANN and the rule-based approach generalized and they
performed comparably at this high sensitivity point.

4. Discussion

Considerable variability was seen in the fraction of the cases that were malignant from
cluster to cluster. Several clusters had malignancy fractions that were notably different
from the fraction of the entire data set (43%). One of the major goals of computer-aided
diagnosis of breast cancer is to identify very likely benign cases as candidates for follow
up in lieu of biopsy, in order to reduce the number of benign biopsies. Therefore, the
clusters with very low malignancy fractions (e.g. neuron #6 with 6% malignant) are
dominated by such very likely benign lesions and may be of particular interest for further
studies. It is possible to use the clusters and their malignancy fractions directly as a tool
for predicting biopsy outcome [4]. For each case, the prediction was the fraction of the
cases that were malignant in the cluster that the case was mapped to by the SOM (Fig. 6).
For very high sensitivities, this prediction scheme (98% sensitivity, 0.26 ± 0.03 speci-
ficity) was competitive with the back-propagation artificial neural network (98%
sensitivity, 0.25 ± 0.03 specificity, P = 0.93); however, this SOM-based method was
not superior to the BP-ANN. The SOM prediction method in conjunction with the CSNN
profiling method has the potential advantage that physicians may understand the intuition
behind it better than they do the BP-ANN, which is often seen as a "black box". The
SOM prediction method, similar to a case-based reasoning system, predicts the prob-
ability of malignancy of a new case by reporting the fraction of similar cases that were
found to be malignant [7]. The SOM prediction method could also potentially be used in
an ensemble of classifiers. If the outputs of two classifiers are not strongly correlated, it is
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possible that they could be combined to produce a classifier that is better than either of its
component classifiers.

The effects of the changing the SOM architecture were investigated (Fig. 3). As
indicated by the presence of large circles in the bubble plots, the SOMs with similar
architectures showed substantial agreement in clustering the data. Moreover, the presence
of linear trends in the comparisons with the 5 x 5, 2 x 8, and 2 x 3 x 3 SOMs suggest that
similar SOM architectures result in similar geometric relationships between clusters. These
data argue that the clustering is relatively insensitive to the SOM architecture for this
problem. It should be noted that this study did not focus on the organization of the clusters
into a topological map. Consequently, many of the analyses in this study could have been
performed using other clustering algorithms.

Fig. 4 lists the CSNN profiles for the clusters identified with the SOM. The successful
separation of a priori known, coarse lesion types (masses, clustered microcalcifications,
focal asymmetric densities, and architectural distortions) provided some quality assurance
of the clustering. Clusters were further identified within the general group of mass lesions,
reflecting different combinations of the mass margin, mass shape, and patient age
variables. The cluster profiles that included calcification features showed stratification
of the general group of calcification lesions only by patient age and not any of the
calcification findings. Notice that while some features may not be considered useful by the
CSNN for profiling individual clusters, it is possible that they could be useful to other
summarizing techniques or to methods designed to describe the differences between
clusters.

An alternative approach to characterizing the clusters is to calculate summary statistics
for each of the features. Fig. 5 shows the mode for each of the BI-RADSTM features and the
mean of the patient age for each cluster. In general, there is good agreement in the cluster
descriptions obtained from these summary plots and the CSNN profiles. However, they are
not identical. The most notable differences are for neurons #10 and 16, which show the
advantages and disadvantages, respectively, of the fact that the CSNN method inherently
includes feature selection.

It may be easier to interpret a CSNN profile, with typically only a few dominant features
per cluster, than to interpret as many summary values as there are input findings. Note as
well that the CSNN takes into the account interdependencies between the features, while
the summary statistics were based on each feature independently. CSNN profiles or
summary statistics can be used to quickly sort through the results of a clustering technique,
but additional characterization may be appropriate for clusters of particular interest.

Classification based on the SOM was competitive to that achieved by the BP-ANN at
high sensitivity levels (Fig. 6). Notable variation in the performance over the clusters
identified by the SOM was observed (Fig. 7). This is consistent with our previous work
demonstrating performance differences with an a priori partitioning of the data into two
broad subgroups of lesions, masses and microcalcifications [17] and suggests that further
work should be done to investigate building cluster-specific models. The variation in the
BP-ANN performance across the clusters could also influence the ultimate clinical
implementation of the decision aid since it may not be useful to apply the BP-ANN to
cases similar to those groups of cases for which it always recommended biopsy in the
training set. Interestingly, the SOM identified a cluster of mass cases (#6) which accounted
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for the majority cases that the BP-ANN would have recommended for follow up rather than
biopsy. Recall that the identification of likely benign cases that could be spared biopsy is the
goal of such computer-aided diagnosis schemes. This suggests that the SOM clustering and
CSNN profiling technique could be used to provide the physician with an alternative
description of what the BP-ANN does for certain types of cases. The identification of a single
cluster that accounted for the majority of the cases that the BP-ANN would have
recommended for follow up also suggests the investigation of rule-based methods to identify
relatively simple diagnostic criteria which might be applied to these cases to aid the
radiologists in their decision making process. Based on the profiles of the clusters identified
by the SOM, we developed a simple classification rule that performed comparably to the BP-
ANN (approximately 25% specificity with 98% sensitivity). Moreover, we demonstrated that
the classification rule generalized to 2177 cases withheld for model validation.
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ABSTRACT

We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,
which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to
help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may
potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic
features extracted by automated image processing algorithms as well as manually interpreted by radiologists according

to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we
extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to
morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data
types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC
area index Az of 0.59 ± 0.03 and partial Az above 90% sensitivity of 0.08 + 0.03. We then developed ensemble models

using different combinations of those data types, and these models all improved performance compared to the local
models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features.
This ensemble performed with Az of 0.69 ± 0.03 and partial Az of 0.21 ±: 0.04, which was statistically significantly
better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial Az
respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It
also suggested there is potential for improved performance using this ensemble classifier approach to combine different
sources of currently available data.

Keywords: computer-aided diagnosis, breast cancer, BI-RADS, image processing, ensemble classifier

1. INTRODUCTION

1.1 Clinical significance

Mammography is the modality of choice for early detection of breast cancer. Although mammography is very
sensitive at detecting breast cancer, its low positive predictive value (PPV) results in biopsy of a large number of benign

lesions. Of women with radiographically-suspicious, nonpalpable lesions who are sent to biopsy, only 15 to 34%
actually have a malignancy by histologic diagnosis [1,2]. The excessive biopsy of benign lesions raises the cost of
mammographic screening [3] and results in emotional and physical burden to the patients, as well as financial burden to

society. It is imperative to improve the specificity of breast biopsy by identifying probably benign lesions for short-term
follow-up instead of biopsy, while maintaining the very high sensitivity of cancer detection [4,5].

The presence of clustered microcalcifications is one of the most important and sometimes the only sign of

cancer on a mammogram [6]. In a recent study from this institution, radiologists demonstrated an interesting dichotomy
in performance when asked to assess the likelihood of malignancy among 1468 nearly consecutive mammography cases
[7]. They performed significantly better as measured by ROC area index (Az) for the mass cases (0.94 ± 0.01) compared
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to the calcifications (0.74 ± 0.02). Similar trends were observed for a variety of statistical and machine learning
modeling techniques as well. Another study from a different institution reported similarly low radiologists' performance
(Az of 0.61) for 104 nearly consecutive microcalcification cases [8].

These studies indicate there is tremendous room for improvement for these calcification cases. If performance
can be improved for these challenging cases, overall specificity will in turn be dramatically increased. It should be noted
that in clinical practice, the radiologist's task is to recommend whether or not to biopsy, rather than predicting an explicit
likelihood of malignancy among lesions already recommended for biopsy. Nevertheless, the fact remains that two-thirds
or more of currently biopsied cases are actually benign. In order to improve specificity of breast biopsy, the additional
challenge becomes to identify a priori more very likely benign cases among those currently referred to biopsy.

1.2 Computer aided diagnosis

It is important to distinguish computer-aided detection vs. computer-aided diagnosis or classification. For
computer-aided detection (CAD), a suspicious lesion is detected and localized by some automated computer vision
technique such as those in the academic literature [9-11] or one of the currently available commercial systems. The main
goal of computer-aided detection is to improve sensitivity by helping radiologists catch disease which might otherwise
have been missed. Once the lesion has been detected by radiologists and/or some computer-aided detection device, a
computer-aided diagnosis (CADx) system then helps the radiologist to classify that lesion or to make a patient
management decision. The main goal of computer-aided diagnosis is typically to help improve specificity, such as by
sparing unnecessary benign biopsies.

We propose a classifier to aid in the decision task of whether to biopsy a suspicious lesion or to refer the case to
short-term follow-up surveillance. Correct diagnoses have the following implications: very likely benign cases may
undergo follow-up instead of biopsy, while the remaining indeterminate cases should undergo biopsy for confirmation
by histopathologic diagnosis. Incorrect diagnoses have the following implications: false positive errors (benign lesions
misclassified as malignant) may result in an unnecessary biopsy, while false negative errors (malignancies misclassified
as benign) may result in delayed diagnosis of an actual cancer. Since the implications for false negative errors far
outweigh those of false positives, CADx systems are typically evaluated at operating points corresponding to very high
sensitivity.

1.3 Local vs. ensemble models

There have been three major approaches to CADx of the breast biopsy decision task, depending on the source
of the input data. The first is to employ image processing techniques which extract features from digitized or digital
mammograms [8,12-19]. These fully- or semi-automated CADx systems are not constrained by the limits of human
vision, should be more consistent, and have the potential to improve the performance of less experienced radiologists.

The second approach is to rely upon radiologists to interpret the images and manually record findings deemed
clinically relevant [20-26]. This approach draws upon the apriori knowledge of these radiologists, who can characterize
a tremendous amount of image information into a list of succinct, useful findings, such as the standardized lexicon
known as the Breast Imaging Reporting and Data System (BI-RADS; American College of Radiology, Reston, VA)
[27]. Moreover, such input data is often already available and intuitively meaningful to physicians, which may facilitate
eventual clinical acceptance of systems based on such data. The disadvantages are the limits of human vision and
knowledge, as well as potential problems arising from intra- and inter-observer variability.

A third approach uses additional information including patient history, clinical, or demographic data. Such data
tend to correlate less well with disease, and can often be very subjective in quality and laborious to collect. An exception
may be the patient age, which is readily available and was identified as a surprisingly useful adjunct in predicting
malignancy in our previous work [28].

We will investigate combining these three sources of data (image processing, BI-RADS, and history) into one
ensemble system. An ensemble system uses multiple classifiers to solve a classification problem by training multiple



models for the same cases and then combining models' predictions [29]. Simple ensembles of classifiers using voting or
averaging to combine their predictions have shown promise in this field [30-33]. The hypothesis here is that an ensemble
classifier comprised of information from all three sources of data can significantly outperform models based upon local
subsets of data.

2. MATERIALS AND METHODS

2.1 Database

Until recently all major research laboratories reported results based upon private databases. The performance of
an algorithm is affected by the characteristics of a database including digitizer choice, pixel size, subtlety of cases,
choice of training/testing subsets, and the number of cases in each subset, thus making it almost impossible to compare
results reported from different research groups [34]. The establishment of the Digital Database for Screening
Mammography (DDSM) [35] allows the possibility of common training and testing data sets for the first time. The
DDSM is the largest publicly available database of mammographic data. It contains approximately 2000 screening
mammography cases obtained between 1988 and 1999 at several institutions including Massachusetts General Hospital,
Wake Forest University School of Medicine, Sacred Heart Hospital, and Washington University in St. Louis School of
Medicine.

For this pilot study, we specified a patient selection criteria to provide a reasonable number of cases while
keeping methodological and statistical issues as simple as possible. From cases with definitive pathology outcome (i.e.
not "unproven" or "benign, no call back"), we randomly selected 292 cases which were digitized by the Howtek digitizer
(which had the most cases compared to the other 2 types of digitizers). Each case had only one cluster recorded in the
truth file, and that cluster was successfully segmented by our existing automated detection algorithm which has been
described in detail previously [36,37]. All image processing was performed only on the medio-lateral oblique (MLO)
view of the breast containing the lesion, thus obviating any problems due to per-case vs. per-patient sampling and
performance analysis.

2.2 Computer-extracted features

For each case, we used the aforementioned detection technique [36,37] as the front end to localize clusters and
segment individual calcifications within those clusters. This fully automated detection scheme consisted of three main
processing steps:

(1) Pre-processing. The breast region was segmented and its high frequency content was enhanced by unsharp masking.

(2) Segmentation of individual calcifications. Individual microcalcifications were segmented using local histogram
analysis on small, overlapping regions of interest (ROls). Each histogram was modeled as a possible bimodal
distribution of bright calcifications on a darker background. Histogram features were extracted and then merged using a
back-propagation artificial neural network (BP-ANN) classifier [38-40] to determine whether each ROI contained a
calcification.

(3) Cluster classification. The calcifications were clustered using a nearest neighbor algorithm. Features were extracted
describing each cluster and then merged using another BP-ANN classifier to reduce the number of false positive clusters.

For each cluster, 22 image processing features were calculated. These consisted of the number of calcifications,
logarithm of that number, total area of all calcifications, logarithm of that area, and the mean and standard deviation of
each of the following nine morphological features: calcification distance, number of overlaps (resulting from the
overlapping ROIs in histogram analysis), calcification area, compactness, central moment, Fourier descriptor,
eccentricity, spread, and orientation.



A region from a sample case containing a malignant calcification cluster and the corresponding detection output
are shown in Figure 1.

Figure 1. Sample detection output for malignant cluster (left: case 1108, left CC, cluster outlined by experienced radiologist, right: true
positive detected cluster bounded by rectangle).

Table 1. BI-RADS mammographic features and numeric encoding

Calc. Distribution Mass Margin
no calcifications 0 no mass 0

diffuse 1 well circumscribed 1
regional 2 microlobulated 2

segmental 3 obscured 3
linear 4 ill-defined 4

clustered 5 spiculated 5

Cale. Morphology Mass Shape
no calcifications 0 no mass 0

milk of calcium-like 1 round I
eggshell or rim 2 oval 2

skin 3 lobulated 3
vascular 4 irregular 4

spherical or lucent centered 5
suture 6 Associated Findings
coarse 7 none 0

large rod-like 8 skin lesion 1
round 9 hematoma 2

dystrophic 10 post surgical scar 3
punctate 11 trabecular thickening 4
indistinct 12 skin thickening 5

pleomorphic 13 skin retraction 6
fine branching 14 nipple retraction 7

axillary adenopathy 8
architectural distortion 9



2.3 Human-extracted features

For each case, we also extracted 5 BI-RADS features and the patient age from the database. The BI-RADS
features were: calcification morphology, calcification distribution, mass shape, mass margin, and associated findings.
Note that the two mass findings occur because these calcification cases were defined as those with the presence of
calcification findings. In some cases, an associated mass was also present. The text labels for each BI-RADS feature
were translated into numeric values using a rank ordering system shown below in Table 1 which we have used
previously in developing models with this type of data [28,41]. In cases where a feature was described by multiple
values, such as if there were two values for the calcification distribution, the greatest value corresponding to the highest
likelihood of malignancy was used.

2.4 Statistical Sampling and Measurements

Due to the relatively low number of cases available, all modeling was performed using linear discriminant
analysis (LDA) using SAS software (SAS Inc., Cary NC) with round robin sampling. Az and partial Az above sensitivity
of 90% were calculated using LABROC4 and compared using CLABROC (both modified by Charles Metz, University
of Chicago, to provide partial Az calculations). The partial Az was used to characterize the more clinically relevant high
sensitivity sub-region of the ROC curve, which emphasizes the far greater cost of a missed cancer compared to an
unnecessary benign biopsy [42].

3. RESULTS

The results are summarized in Table 2 and Figure 2 below. Each row represents the performance of a model
based upon a combination of one or more of the three sources of data, which have been color coded: A) blue for image
processing features, B) pink for BI-RADS, and C) green for the sole history feature of age. The columns labeled as A, B,
and C indicate that the model on that row used some or all of the features from that source of data.

None of the 3 sources of patient data by itself provided much useful information, as shown in rows A, B, and C
all with Az < 0.6. There were however interesting improvements when these data were combined together. For example,
on row D, the addition of just age (which by itself performed close to chance) significantly improved performance over
the 5 BI-RADS features alone in row B (p<0.001 for both full and partial Az). On row E, the further addition of the 22
image processing features, i.e., using all 28 available features, did not improve performance compared to row D. On row
F, when stepwise LDA was used to reduce those 28 total features to just 5, however, that yielded the best performance of
all at Az of 0.69 and partial Az of 0.21. This final 5-feature model is significantly better than using only the 22 image
processing features (row F vs. row A) for both full and partial Az (p<0.001 and p=0 .0 1 respectively). The final 5-feature
model was not however significantly better the 6 human-extracted features (row F vs. row D) for either full or partial Az
(p=0.07 and p=0 .15 respectively). Those final 5 features were (in order of descending significance): BI-RADS
calcification distribution, mean central moment, mean eccentricity, BI-RADS mass margin, and BI-RADS calcification
morphology.

Table 2. Performance of LDA models with different feature combinations from 292 DDSM cases.

Feature combination A B C Az Partial Az
A) 22 image processing only 0.59 ± 0.03 0.08 ± 0.03
B) 5 IW5-RA[)S by radiolobxist on 't111y 0.58 + 0.03 0.07 ± 0.02
C Age alone 0.52 ± 0.03 0.05 ± 0.02
D) All 6 human extracted (5 BI-RADS + age) 0.66 + 0.03 0.13 ± 0.03
E) All 28 features 22 image + 5 BI-RADS + age) 0.65 ± 0.03 0.11 ± 0.03
F Ste wise selection of to 5 features from all 28 0.69 ± 0.03 0.21 ± 0.04

The ROC curves for rows A, D, and F are plotted below in Figure 2. As described above, row A with the image
processing features only performed poorly (shown by red line), and the final ensemble including contributions from BI-



RADS features improved that performance significantly (row F shown by gold line). The human extracted features only
from row D were intermediate between those two curves.
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Figure 2. ROC Curves for Ensemble vs. Local Models

4. DISCUSSION

These results suggest several interesting trends. Local models based upon these image processing features or
the BI-RADS features each performed comparably (in fact comparably poorly). The addition of age to the BI-RADS
features significantly improved performance, which is consistent with our previous experience with these human-only
models. The further addition of image processing features improved performance even further, albeit not significantly.
That may change with either more cases or better image processing features. For example, there are many other
morphological features not used here, as well as several different categories of texture features which have been shown
to be very useful for this particular task [14].

Intriguingly, the feature-reduced model did not include age as one of its remaining features. Apparently the
significance of age was much decreased in the presence of these image processing and BI-RADS features, a fact that
warrants further investigation. The final ensemble model based upon 2 image processing and 3 BI-RADS features did
significantly outperform one based upon just the 22 available image processing features, supporting once again the value
of these BI-RADS findings in this decision task.

It should be noted that although the trends support the value of building ensemble models for this data, these
ROC performance values were still quite poor. The best Az was only 0.69 and the best partial Az 0.21, corresponding to
the average specificity over the range of sensitivities from 0.90 to 1.00. Given the equally poor performance of
radiologists for calcification cases, however, there is great potential for improvement. In the end, the most important test
in the future will be to assess whether radiologists can use such models to improve their clinical performance.
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